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Summary: When reference signal for the FxLMS algorithm is taken from an acoustic sensor convergence 
can he very slow due to great eigenvalue spread. Using a nonacoustic sensor, such as a tachometer, 
cancellation of narrow hand noise in the sensed fundamental frequency and harmonically related ones can he 
achieved very fast, although other periodic noises and the underlying broadband noise will remain. 
Backward prediction errors resulting at the various stages of an Adaptive Lattice Predictor (ALP) represent a 
time-domain orthogonalization of the input signal. An ALP structure, with the acoustic reference as input 
signal, hcfore a FxLMS makes up the FxGAL algorithm. Due to orthogonalization, FxGAL can he 
significantly faster compared to FxLMS with reference from a microphone. When compared to FxLMS with 
tachometer signal, it is not faster hut it can cancel every periodic noise. independently of the harmonical 
relation hctween them, as well as the underlying broadband noise. Comparative results hctween FxLMS 
(with acoustic and non-acoustic reference) and FxGAL are presented. 

I. INTRODUCTION 

The Filtered-x Least Mean Square (FxLMS) algorithm (I) is the most widely used in 
the context of adaptive active control, due to its simplicity as well as robustness, However, 
the main drawback of this algorithm is its relatively slow and signal-dependent convergence, 
which is determined by the eigenvalue spread of the underlying correlation matrix of the input 
signal. When working in nonstationary environments, such as automobiles, slow convergence 
is a critical problem, since we would desire to cancel transient noise, which occurs at vehicle 
start-ups, stops, or gearshifts, or with sudden changes of engine speeds or road noise from 
tyres. 

A practical solution to this problem, very commonly used, is to use nonacoustic 
sensors, such as a tachometer, instead of acoustic ones and artificially generate the signal to 
use as reference. This way, convergence can be achieved very fast, since it is possible to 
generate orthogonal references (in-phase and quadrature components). On the other hand, it is 
only possible to cancel the narrowband noises in the fundamental frequency sensed by the 
nonacoustic sensor and other harmonically related frequencies, whereas every other periodic 
or broadband noise will remain uncancelled. 

In this paper we introduce an algorithm, the Filtered-x Gradient Adaptive Lattice 
(FxGAL), that aims to improve the convergence of the whole adaptive system when using 
acoustic sensors to get the reference signal, at the expense of increased computational 
complexity. The approach consists in conditioning the FxLMS reference signal by pre- 
processing it and obtaining a decomposition of the signal in orthogonal (decorrelated) 
components. With a decorrelated input signal, the convergence modes of the FxLMS system 
are decoupled, and the whole adaptive filter of order L turns into L independent adaptive 
filters of just one coefficient, These independent systems can have their own adaptation step 
size, in order to obtain the same convergence speed for all of them. 
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The decorrelating system used in the FxGAL 
algorithm is an Adaptive Lattice Predictor (ALP) (2, 
3). It is a modular structure, in such a way that the 
predictor of order L consists of L - 1 identical 
cascaded stages. The structure of one of such lattice 
stages can be seen in Figure 1. The inputs to the 
stage 1 are the forward and backward prediction 
errors of the (L - I)-th order predictor, and the 

FIGURE 1. Detailed .structure of I-th 
stwe of an Adaptive Lattice Predictor. 

outputs are the forward and backward prediction 
errors of the L-th order predictor. The ALP system 
itself is an adaptive filter, where a steepest descent 
method is used to adjust the filter coefficients 

(k/[n]) independently at each stage, so as to minimise the mean square of the sum of forward 
and backward predictor errors at that stage. 

The fundamental property of the ALP system that our algorithm relies on is the 
orthogonality of the backward prediction errors. In every moment, the sequence of backward 
prediction errors [ ba[n], bt [n], , bL.1 [n] ] are mutually uncorrelated and are a transformation 
of the input sequence (x[n], x[n-I], .., x[n-L+l]} without loss of information. Therefore, we 
can use them as the (decorrelated) input signals to the FxLMS instead of using the reference 
signal itself, and so, speed up the convergence of the whole system making every mode 
converge at the same speed. 

In Figure 2 we can see the structure of the algorithm we present in this paper. We have 
called it FxGAL (Filtered-x Gradient Adaptive Lattice) by analogy with the FxLMS, since the 
LMS block is substituted by a lattice structure where the GAL algorithm is used to adaptively 
update the filter coefficients. The system can also be seen as a predictive lattice pre- 
processing stage that decorrelates the reference signal for the transversal LMS filter. 

To reduce the computational complexity of the algorithm, sometimes it is feasible to 
substitute the last (Lo - JC) lattice stages of the ALP by a delay line without practically 
affecting performance, as will be shown in the results obtained. This is possible when the 
signal can be no longer decorrelated after Lo lattice stages, that is when the optimal lattice 
coefficients for I > Lo are very close to 0, Icr[n] = 0. Fortunately, this is a very common 
situation. This way, the filter structure would be a lattice and transversal combination. 
Another important property of the ALP system is its modularity, that makes possible to 
dynamically change the order of the prediction filter, adding or removing lattice stages. 
without having to reassess all the filter coefficients, but just the new ones. 

GAL 

FIGURE 2. Filtered-x Gradient Adaptive Lattice (FxGAL) algorithm block diagram 
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FIGURE 3. Learning curves comparison of 
FxGAL and FxLMS algorithms for broadband 
noises. 
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FIGURE 4. Learning curves for real signals: (1) 
FxLMS, (2) FxGAL and (3) combined lattice- 
transversal FxGAL. 

III. RESULTS. 

Computer simulations have been performed for artificially generated broadband noise. 
The reference signal is a pink noise, obtained by low pass filtering of a white noise. The 
primary noise to cancel is obtained by band pass filtering of the same white noise that 
generates the reference signal. The secondary path transfer function is taken from the 
examples in (3) and the FIR model of it, necessary for the adaptive process, was obtained 
previous to the operation of the system. Both systems, FxLMS and FxGAL, were tested for 
this arrangement. The parameters of the systems were determined so as to obtain the same 
steady-state mean square error. The learning curves of the two compared systems are shown 
in Figure 3. It can be seen the significant speed improvement achieved by the FxGAL system, 
while keeping the same steady-state solution. 

The tests performed have proved that the whole system convergence speed has 
reduced sensitivity to variations in the ALP adaptation step size. In any case, much lower than 
the sensitivity to variations in the adaptation step size of the FxLMS block. 

Engine noise signals in different points in the inside of a coach were recorded 
simultaneously for several situations. Two of these signals were used as reference signal and 
primary noise respectively in the following tests. The secondary path transfer function used 
was a pure delay. 

Figure 4 shows the learning curves obtained for three different systems: FxLMS (L = 
30), FxGAL (Lo = L = 30) and FxGAL combining lattice and transversal structures (Lo = 10, 
L = 30). For viewing purposes, the curves were smoothed by moving average filtering. 
Adaptation step sizes for the three systems were determined independently so as to maximise 
the cancellation. As can be seen from the figure, there is little performance difference between 
the (complete) lattice system and the lattice-transversal combination. Being the signals real 
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FIGURE 5. Error spectrums: ANC off (solid line), 
FxLMS with nonacoustic reference (dashed line), 
F&AL with acoustic reference (dash-dot line). 

and nonstationary, the FxGAL systems are 
also able to obtain more cancellation than 
the FxLMS, due to their faster adaptation to 
nonstationarities. 

Figure 5 shows the error signal 
spectrums obtained for the same 
arrangement in three different situations: 
without active noise control, with the 
FxLMS system driven with tachometer 
signal and with the FxGAL system with 
acoustic reference. It can be seen that the 
FxLMS is unable to cancel the sinusoidal 
components in 39 and 59 Hz, since they are 
not harmonically related to the fundamental 
noise (50 Hz), whereas the FxGAL 
cancellation is greater, tending to get a 
flatter spectrum in the whole frequency 
band. 

In some peculiar cases, where the secondary path transfer function is not flat in 
magnitude and group delay in the frequency band of interest (s[n] scattered), the orthogonality 
property of the backward prediction errors of the ALP, (b,[n]), can be diminished in the 
filtered signals, (b;[n]], that are used to update the filter W(z), slowing down the algorithm. 
This problem could be solved orthogonalising the filtered signal, x’[n], that updates the filter. 

IV. CONCLUSIONS. 

In this paper, we have introduced the FxGAL algorithm, that obtains faster 
convergence than the clasical FxLMS, at the expense of increased computational complexity. 
In real situations, this faster convergence means also greater noise cancellation. An alternative 
system that combines the lattice and transversal structures has also been presented. The 
combined system has approximatedly the same convergence properties as the FxGAL, but 
significantly reduced computational complexity. 
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